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Abstract. We consider information acquisition uncertainty in the Grossman-

Stiglitz economy and show that costly information in financial markets can be

welfare improving. The marginal welfare can be decomposed into a positive

information-gain effect and a negative informed-trading effect. The welfare benefit

can be substantial for speculators who provide liquidity when risk-sharing incen-

tives are weak and information quality is moderate so that the information-gain ef-

fect dominates. When the informed-trading effect dominates, only no-information

equilibrium is Pareto-optimal. With heterogenous endowment shocks, the Hirsh-

leifer effect allows for a continuum of Pareto optimal equilibria. This suggests that

regulatory efforts to alter the amount of informed trading may be unnecessary.
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1. Introduction

Is costly information acquisition beneficial or harmful to investors’ welfare? Since

the introduction of rational expectations equilibrium (REE) models (Grossman and

Stiglitz, 1980; Hellwig, 1980; Diamond and Verrecchia, 1981; Admati, 1985), there

has been an extensive debate on whether spending resources on acquiring private

information about the future payoff of a risky asset has any social value. In other

words, when focusing on the overall welfare, should the regulators aim to create a

level playing field by restricting traders from gathering private information?

We try to address this question in a canonical REE model, with one key difference

in how investors make information acquisition decisions. Instead of deciding whether

or not to pay a fixed cost for purchasing a private signal about asset’s fundamentals,

investors in our model make probabilistic choices, i.e., they pay a variable cost in

exchange for an optimal probability of being informed. The key point we want to

raise is that information about fundamentals needs to be discovered. Investors must

spend effort (hence, money) to find relevant information on financial markets, and

even in this case, they do not necessarily succeed eventually. The simplest way to

model this paradigm is to assume that each investor optimally allocates part of her

wealth to increase the probability of being informed.

Information acquisition under probabilistic choices is similar to playing a lottery

game: the more tickets a player purchases, the better the chance of winning, and the

higher is the cost of the action. In the context of financial markets, an investor may

purchase, for example, an analyst report, hoping to obtain valuable information

about the fundamental value of a firm. Ex-ante, investors expect a higher gain

by paying more for the report. Ex-post, the analyst report could turn out to be

either informative or completely useless. Think about a continuum of information

providers of different reliability: the more the investor pays for a provider with

better quality, the higher the chance to be informed. Put differently, each investor

strategically chooses the information provider to maximize expected utility. In the

standard Grossman-Stiglitz economy, where traders chose to be either informed

(paying a fixed cost) or to remain uninformed, it is well-known that information
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acquisition always reduces welfare. In contrast, we find that such costly probabilistic

information acquisition can be welfare-improving.

To provide intuition about this finding, we consider the following illustrative ex-

ample to compare settings with and without information acquisition uncertainty.

Example. A trader faces two outcomes; (i) be informed and receive a utility (or

payoff) x, or (ii) be uninformed and receive a utility (payoff) y < x, in two scenarios;

• Scenario 1 (Binary Choice) – the trader can pay a fixed cost c to be informed

with certainty.

• Scenario 2 (Probabilistic Choice) – the trader can pay a quadratic cost µ p2

(µ > 0) for a probability p to be informed so as to maximize U(p) = p x +

(1− p) y − µ p2.

In Scenario 1, three outcomes are possible. Either x−c > y and the trader chooses

to pay c; x− c < y and the trader chooses not to pay c; or x− c = y in which case

the trader is indifferent. Typically, models with endogenous information acquisition

consider the third case as the overall equilibrium, where the market fraction of

informed traders, λ, is endogenously determined by c = x(λ)− y(λ) in equilibrium.

Lowering the cost allows more investors to be informed, but reduces the relative

benefit (and hence incentive) to become informed, meaning x′(λ) − y′(λ) < 0, i.e.,

the market exhibits strategic substitutability in information acquisition. In terms of

welfare implications, since traders’ welfare in equilibrium is given by W(λ) = y(λ),

whether information acquisition is beneficial or harmful depends on the sign of y′(λ).

There are at least two reasons to believe that y′(λ) < 0 (and hence x′(λ) < 0), so

that more informed trading reduces the utility (payoffs), both of which are related to

the destruction of trading opportunities due to information disclosure by informed

trading.

In the standard Grossman-Stiglitz economy, the key idea is that informed trading

resolves payoff uncertainty, distorts risk-sharing amongst traders and thus reduces

welfare through two channels. The first channel is the well-known Hirshleifer effect

(Hirshleifer, 1971). Suppose traders want to hedge against future endowment shocks

by trading the risky asset. By resolving future payoff uncertainty, informed trading

brings the asset price closer to its fundamental, which makes it more difficult to
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insure against the realization of the asset payoff, and thus reduces traders’ willingness

to trade. The second channel is the return effect (Kurlat & Veldkamp, 2015). In

this case, even without endowment shocks, more informed trading is still harmful

to traders, because the reduction in risk also reduces an asset’s expected return,

and the net effect on welfare is negative. As explained by Goldstein and Yang

(2017), a “common theme of both channels is that disclosure harms investors through

destroying trading opportunities”. Therefore, both the Hirshleifer and return effects

contribute negatively to marginal welfare. This is now well understood, and is

commonly referred to as the informed-trading effect.

We now turn to Scenario 2, in which traders make probabilistic information

choices. The optimal probability a trader chooses is p∗ = (x−y)/(2µ), with trader’s

welfare W ≡ U(p∗) = y+ p∗(x− y)/2 > y.1 Therefore, under probabilistic choices a

trader is always better off at the optimum compared to staying uninformed, which

contributes positively to marginal welfare. We refer to this novel effect as the antic-

ipatory information-gain effect. More explicitly, the payoffs x and y depend on the

optimal probability p∗ and hence on the level of informed trading λ. In equilibrium,

p∗(λ) = λ = [x(λ)− y(λ)]/(2µ) and W(λ) ≡ U(p∗, λ) = y(λ) + p∗[x(λ)− y(λ)]/2. In

this case, the marginal welfare can be decomposed into

W ′(λ) =
∂U(p∗, λ)

∂p∗
+
∂U(p∗, λ)

∂λ
=

1

2
[x(λ)− y(λ)]︸ ︷︷ ︸

information-gain effect

+ y′(λ) +
1

2
λ(x′(λ)− y′(λ))︸ ︷︷ ︸

informed-trading effect

.

Therefore, costly information acquisition can be welfare-improving when the positive

information-gain effect dominates the negative informed-trading effect. Intuitively,

the information-gain effect comes from traders, who make optimal probabilistic in-

formation choices, anticipating the potential benefit that can be realized if they

succeed in acquiring the private signal and thus become informed. This antici-

patory welfare effect is non-existent in the Grossman-Stiglitz model since traders

already know the outcome of their information choice once they decide to pay or

not pay the cost.

In the spirit of Grossman and Stiglitz (1980), our aim is to use a REE model

to analyze the trade-off between the information-gain and informed-trading effects

1Note that in case (x− y)/(2µ) ≥ 1, then p∗ is settled to 1.
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on marginal welfare and examine the market conditions under which information

acquisition is welfare-improving. Section 2 presents a noise-trader model in line

with Grossman and Stiglitz (1980), where a continuum of identical CARA utility-

maximizing traders (speculators) provide liquidity to noise traders whose supplies

are exogenous and normally distributed. The model can be separated into two

stages. In the first stage, each trader strategically chooses a probability p to be

informed and pays the corresponding cost µ c(p). Facing information acquisition

uncertainty, the investor’s objective is to choose the optimal probability of observ-

ing the private signal. We study how these probabilistic information choices change

the equilibrium outcome and lead to different welfare implications. As a result, a

fraction, λ, of the traders will be informed by receiving a private signal about the

asset’s future payoff. In the second stage, each trader forms an optimal portfo-

lio conditional on his information set and the equilibrium price is determined by

the market clearing condition in financial market. We fully characterize a unique

equilibrium in terms of the price for the risky asset and fraction of informed traders.

In Section 3, we analyze the effect of traders’ probabilistic information choices

on their collective welfare, and obtain three main results. First, we explicitly char-

acterize the informed-trading and information-gain effects and derive a necessary

and sufficient condition for a positive marginal welfare under information acquisi-

tion, i.e., a marginal increase in the fraction of informed traders leads to an increase

in their welfare. We find that welfare-improvement is more likely to occur when

risk-sharing incentives and information quality are both low. Notably, given that

price information efficiency improves with information acquisition, this also implies

that information acquisition uncertainty can offer a solution to the paradox in the

Grossman-Stiglitz economy that information acquisition improves price efficiency

but reduces welfare. Intuitively, higher information quality (e.g., a more precise

private signal) means that more uncertainty is resolved by informed trading; while

higher risk-sharing incentives (e.g., a higher risk aversion) means traders care more

about their trading opportunities. Both of them worsen the negative informed-

trading effect on marginal welfare. Secondly, there exists a unique Pareto-optimal

state (λ∗) where traders’ welfare is maximized. This implies that an increase in
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the level of informed trading improves welfare for λ < λ∗. Therefore, from a pol-

icymaker’s point of view, whether or not a policy attempting to change the level

of informed trading by tightening or loosening restrictions is welfare-improving de-

pends on the current market state. More specifically, a policymaker can control

the level of informed trading by fine-tuning the cost sensitivity parameter, i.e., µ as

defined in the example. Thirdly, the magnitude of the welfare benefit of information

acquisition is highly significant, especially when the risk-sharing incentives are low.

As a result, completely removing the opportunity to acquire private information can

potentially incur a large welfare cost.

As pointed out by Bond and Garcia (2018), welfare analysis can be compromised

when the demand of the noise traders is not explicitly modeled. To overcome this

issue, we present a second formulation of the model in Section 4, where the noise

demand is endogenized. In this setup, traders’ optimal demand consists of a specula-

tive component and a hedging component related to the presence of a trader-specific

endowment shock. In this more general setting, in addition to the information-gain

effect, we are able to capture both the aforementioned Hirshleifer and return ef-

fects, which together characterize the negative informed-trading effect on marginal

welfare. We find that information acquisition affects traders’ welfare differently de-

pending on the size of their endowment shocks. It tends to be welfare-improving for

liquidity providers, i.e., traders with small endowment shocks who trade to make

speculative profits, but welfare-reducing for liquidity consumers, i.e., traders with

large endowment shocks who trade to hedge their endowment risk. This is because

the Hirshleifer effect dominates marginal welfare for those traders who are liquidity

consumers with large endowment shocks. The policy implications from analyzing

information acquisition in the more general endowment economy are twofold: either

the no-information equilibrium is the only Pareto-optimal equilibrium or there ex-

ists a continuum of Pareto optimal equilibria. This latter situation happens when

risk-sharing incentives are low and the informed-trading effect does not dominate

the information-gain effect. In comparison, when risk-sharing incentives are high

and the informed-trading effect dominates, only the no-information equilibrium,

i.e., λ = 0, is Pareto-optimal.
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We conclude the paper in Section 5 and collect all the proofs and additional

discussions in Appendices A and B.

Related Literature. Our paper is closely related to the vast and diverse literature

that examines the equilibrium outcomes of endogenous information acquisition and

disclosure and their implications to welfare, going back at least to Hirshleifer (1971).

Our first contribution to the literature offers a novel channel through which infor-

mation acquisition improves investors’ ex-ante welfare in financial markets. In the

Grossman-Stiglitz setup, it is well-understood that, by resolving uncertainty and de-

stroying trading opportunities, information disclosure in financial markets is welfare

reducing (see, e.g., Allen (1984), Kurlat and Veldkamp (2015), the excellent survey

paper of Goldstein and Yang (2017) and the references cited therein). For welfare

improvement, some authors have proposed possible market regulations, including to

impose a tax on information gathering (Allen, 1984) or a mandatory information

disclosure (Kurlat and Veldkamp, 2015).2 Other literature has identified alternative

channels.3 The present paper deviates from the literature by introducing information

acquisition uncertainty to the Grossman-Stiglitz equilibrium. This is important for

market regulators who are concerned about transparency and having a level playing

field with respect to information in financial markets. According to Glosten and

Putnins (2019), “Regulation can alter the amount of informed trade. For example,

regulation can affect the costs of private information, make it more or less accessi-

ble, or prohibit the use of particular types of information”. Our analysis suggests

the following. If we only consider the welfare of the liquidity providers (specula-

tors) in the noise-trader model, a low level of informed trading can potentially be

Pareto-optimal, especially when risk-sharing incentives is low and information qual-

ity is moderate. In the more general setup with endowment shocks, such costly

financial reforms may not be necessary, since any changes to cost sensitivity may

2By examining the welfare implication of mandatory disclosure by asset issuers to potential buyers
about asset quality, Kurlat and Veldkamp (2015) find that, even when asset issuers bear of the cost
of information and providing information improves risk allocation, information acquisition can still
be welfare-reducing, “simply because resolving risk reduces returns”.
3They include risk-sharing among outsiders with stochastic liquidity (Bhattacharya and Nicodano,
2001), the feedback effect of investment policy (Dow and Rahi, 2003), preventing market failure
(Goldstein and Leitner, 2018), externality in the use of private information (Vives, 2017), and
heterogeneous private valuations of risky assets (Rahi and Zigrand, 2018; Rahi, 2021).
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be beneficial for liquidity providers (speculators) and welfare harmful for liquidity

consumers (hedgers), and therefore not Pareto-improving. An exception is when

the current level of informed trading or the risk-sharing incentives are too high, in

which case increasing cost to discourage information gathering can improve welfare

for all traders.

Secondly, this paper complements to the literature that examines the impact of

public information transparency on welfare. This literature has provided possi-

ble reasons for the negative welfare effect of public information. By introducing a

beauty-contest motive into agents’ preferences in a coordination game, Morris and

Shin (2002) show that a noisy public signal can be detrimental to ex-ante welfare.

Angeletos and Pavan (2007) find that whether increased reliance on public informa-

tion is socially valuable depends not only on the form of strategic interaction, but

also on the type of economy and information structure. Amador and Weill (2010)

study the effect of public announcements on price informativeness and welfare (in

a Lucas (1972) model with random productivity and nominal shocks). They find

that public information release may increase uncertainty and reduce welfare and the

optimal communication policy is always to release either all or none of the informa-

tion. To prevent the negative welfare effects of public information, Morris and Shin

(2002) propose to withhold relevant information or deliberately reduce information

precision. By distinguishing between precision of information and degree of public-

ity, Cornand and Heinemann (2008) show that information released with maximum

precision can be welfare-enhancing if only provided to some fraction of market par-

ticipants. Contrary to allowing for intermediate degrees of publicity exogenously in

Cornand and Heinemann (2008), we endogenize the level of information release as

an agents’ decision variable through a strategic game: agents maximize the likeli-

hood of being informed ex-post by paying a cost which also depends on this decision

variable. It turns out that, at the endogenous information equilibrium, there is a

trade-off between information quality and degree of publicity for Pareto optimality

resembling the findings in Morris and Shin (2002) and Cornand and Heinemann

(2008). We find that, to maximize traders’ welfare, policymakers can increase infor-

mation acquisition cost sensitivity in response to high information quality in order
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to drive down informed trading to the Pareto-optimal state, however, not necessarily

to the no-information equilibrium. Moreover, with an intermediate level of informa-

tion quality and low risk-sharing incentives, the relative welfare improvement from

the no-information equilibrium can be very significant. In other words, there can

be a large welfare loss for the liquidity providers in the market if the information

acquisition opportunity was completely lost.

Thirdly, this paper relates to a separate strand of literature which studies the

complementarity of information acquisition and the effect of information frictions on

price efficiency. For example, Veldkamp (2006) shows that competitive information

production can lead to information complementarity and inflate asset prices and

volatility. Goldstein and Yang (2015) extend the Grossman-Stiglitz model to include

two dimensions of uncertainty to analyze the interaction between different types of

informed traders. Breugem and Buss (2019) show that benchmarking behavior of the

institutional investors can lead to a reduction in information acquisition and price

efficiency. We show that information acquisition uncertainty can simultaneously

improve ex-ante welfare and price efficiency when the level of informed trading and

risk-share incentives are sufficiently low. In comparison, when risk-sharing incentives

are too high only the no-information equilibrium, in which price reveals no private

information, is Pareto-optimal.

Fourthly, this paper develops a new modelling framework for information acquisi-

tion in financial markets. Our probabilistic choice model is adopted from Mattsson

and Weibull (2002). In their model, an individual optimally makes an effort to

deviate from the status-quo and changes the likelihood of a finite set of possible

scenarios in order to get closer to implementing a more desired outcome.4 In our

context, the desired outcome is to observe the private signal and be informed. In

contrast to Mattsson and Weibull (2002), we use monetary instead of utility cost,

which is more suited to the Grossman-Stiglitz framework. Moreover, we use a qua-

dratic instead of an entropic cost function, which allows us to obtain more explicit

results without sacrificing any economic insights. The framework naturally connects

4The framework developed in Mattsson and Weibull (2002) can also be related to rational inat-
tention as described in Sims (2003), where economic agents have limited ability to process or pay
attention to information.
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settings with and without information acquisition uncertainty, providing economic

channels explicitly for welfare improvement.

Finally, the costly information game setup in this paper also contributes to the

large literature on endogenous information equilibrium with rational expectations.

Starting from Diamond and Verrecchia (1981), Admati (1985), Diamond (1985),

and Admati and Pfleiderer (1987), there have been intensive studies on information

markets. When an increase in information demand causes more information to be

provided at a lower price, Veldkamp (2006) identifies information markets where

the equilibrium level of information emerges endogenously as the source of media

frenzy and market herding.5 In contrast, we consider an increasing and convex cost

function for information that depends on the probability of being informed. In

some sense, the randomness on what investors place their bets is not the quality of

the signal, rather the quality of the information provider. The resulting trade-off

between the equilibrium level of informed trading and information quality for Pareto

optimality is in line with rational inattention described in Sims (2003): economic

agents have limited ability to process information or to pay attention to it. Although

the rational inattention literature is mainly focused on information precision, our

agents are also characterized by rational inattention. In particular, with increasing

information complexity, they are aware of the limited resources to grasp information

and set the optimal level of effort (reduction of inattention). The greater the agent’s

effort, the higher the probability to be informed, and the higher is the attention the

agent puts on available signals.

Interestingly, Hoff and Stiglitz (2016) recently discussed the importance of advanc-

ing the economic modelling background to allow for endogenization of preferences

and behaviors. They argue that an equilibrium in the economy is a joint (endoge-

nous) outcome expressed in terms of probability of types and market prices. In this

respect, our framework can be seen as an attempt to introduce endogenization of

types into an otherwise standard exchange economy.

5Hellwig and Veldkamp (2009) further discuss information acquisition in a Morris-Shin “beauty
contest” framework, where signals can be bought by a heterogeneous population of strategic agents
for a cost depending on the quality of the signal.
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2. A Noise-Trader Model

This section extends the standard Grossman-Stiglitz model to incorporate infor-

mation acquisition uncertainty under probabilistic choices. There is a continuum of

identical (price-taking) constant absolute risk aversion (CARA) utility-maximizing

traders, indexed by i ∈ (0, 1), who can invest in a risk-free asset (with a normalized

interest rate of zero) and a risky asset. The risky asset has a payoff D̃ = θ̃+ ε̃, where

θ̃ ∼ N (0, vθ) is a private signal about the payoff, and ε̃ ∼ N(0, vε) is the residual

noise, which is independent of θ̃. Thus, D̃ ∼ N (0, vD), where vD = vθ + vε, and

D̃|θ ∼ N (θ, vε).

2.1. Probabilistic Choice and Trading. There are three dates, t = 0, 1, 2. At

t = 0, trader i chooses a probability p∗i to observe the private signal θ̃ at a cost

µ c(p∗i ), where c(p) is an increasing and convex cost function with c(0) = 0 and

µ > 0 measures the cost sensitivity. At t = 1, a Boolean random variable ω̃i is

drawn independently for each trader with P(ω̃i = 1) = p∗i and P(ω̃i = 0) = 1 − p∗i .

If ω̃i = 1, the trader observes θ̃ and becomes informed (type I). Otherwise, ω̃i = 0;

the trader does not observe θ̃ and remains uninformed (type U).

Let P̃ be the price of the risky asset. Depending on his type, each trader chooses

his optimal demand x∗i in the risky asset. Assume all utility-maximizing traders

have a CARA coefficient α and zero initial wealth. Then trader i’s objective is to

choose pi and xi (conditional on his information Fi) to maximize

E
[
− e−α(xiR̃−µ c(pi))

∣∣∣∣Fi], R̃ ≡ D̃ − P̃ . (2.1)

In addition, there is also a group of noise traders whose net supply for the risky

asset is z̃ ∼ N(0, vz), which is independent of θ̃ and ε̃.6 At t = 2, the noise supply

z̃ is realized, P̃ is determined by the market clearing condition, and each trader

receives his allocation of shares in the risky asset. Then the payoff D̃ is realized and

consumption occurs.

6In Section 4, we model the behaviour of liquidity (or noise) traders explicitly using endowment
shocks. To simplify the analysis, we assume a noisy supply in the baseline model in Sections 2 and
3.
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2.2. Portfolio Choice and Financial Market Equilibrium. The CARA-normal

setting implies that traders’ portfolio choices at t = 1 follow the standard mean-

variance criteria. Hence, if we take the fraction of informed traders λ as a given state

variable, representing the level of informed trading, we can solve for equilibrium in

the financial market in each market state.

Following REE, we postulate a linear equilibrium price

P̃ = bθθ̃ − bz z̃, (2.2)

where the coefficients bθ and bz are to be determined in equilibrium. Informed traders

observe both the private signal θ and the price P , thus their optimal portfolio is

given by x∗I(θ, P ) = E[R̃|θ, P ]/(αV ar[R̃|θ, P ]). Uninformed traders observe only the

price, and their optimal portfolio follows x∗U(P ) = E[R̃|P ]/(αV ar[R̃|P ]). Next, to

determine the coefficients bθ and bz we use the market clearing condition,∫ 1

0

x∗i di = λx∗I(θ, P ) + (1− λ)x∗U(P ) = z̃, (2.3)

We characterize the financial market equilibrium in the following proposition.

Proposition 2.1. (Financial Market Equilibrium)

(i) The optimal demands of the informed and uninformed are, respectively,

x∗I(θ, P ) =
θ − P
αvε

, x∗U(P ) =
−P

αvD(1 + nλ/ξ0)
, (2.4)

where

ξ0 = α2vDvz, n =
vθ
vε
, vD = vε + vθ.

(ii) Given the fraction of informed traders λ, the linear equilibrium price of the

risky asset

P̃ =

(
λv̄

vε

)
θ̃ − (αv̄) z̃,

1

v̄
=
λ

vε
+

1− λ

vD

(
1 + nλ

ξ0

) . (2.5)

Financial market equilibrium is the same as that in the Grossman-Stiglitz model.

Here, ξ0 can be interpreted as an indicator of traders’ risk-sharing incentives. Intu-

itively, when risk aversion, payoff risk, and noise-trading risk are high, traders have
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more incentives to engage in risk-sharing. Moreover, ξ0 is also related to the Sharpe

ratio of the uninformed traders’ portfolio in the no-information equilibrium.7

The parameter n represents the information-to-noise ratio, which can also be

interpreted as a measure of information quality.8 The higher the information quality,

the more information benefit informed traders receive from observing the signal θ̃,

as a larger proportion of the payoff uncertainty is resolve by the signal. As in the

Grossman-Stiglitz model, we can write down the following ratio between return

variances perceived by informed and the uninformed traders,

V ar[R̃|θ, P ]

V ar[R̃|P ]
= 1− nξ0

(1 + n)(ξ0 + nλ2)
, (2.6)

which is decreasing in n and increasing in λ. Therefore, as the level of informed

trading increases, the information advantage informed traders have over the unin-

formed traders reduces. Again, high information quality increases the benefit for

informed traders relative to the uninformed traders.

2.3. Information Choice and Equilibrium. For information acquisition, by tak-

ing into account the associated cost, trader i makes a probabilistic choice pi to

maximize

U(pi;λ) ≡ [piVI(λ) + (1− pi)VU(λ)] eαµc(pi), (2.7)

where λ =
∫ 1

0
ωi di is a state variable representing the fraction of informed traders

who observe θ̃, and

VI(λ) = E
{
E
[
−e−αx∗I (θ,P )R̃

∣∣∣θ, P]} , VU(λ) = E
{
E
[
−e−αx∗U (P )R̃

∣∣∣P]}
are their maximum expected utilities of the informed and uninformed attainable by

the optimal portfolios x∗I(θ, P ) and x∗U(P ), respectively. Note that VI(λ) and VU(λ)

depend on λ since the equilibrium price P̃ itself depends on λ.9

7In the case of λ = 0, the risk premium E[R̃|P ] = −P = αvD z̃ and the return variance V ar[R̃|P ] =

vD, therefore the Sharpe ratio can be calculated as
√
V ar{E[R̃|P ]}/V ar[R̃|P ] =

√
ξ0 = α

√
vDvz.

8In fact, the correlation coefficient ρ(θ̃, D̃) between the signal θ̃ and payoff D̃ satisfies ρ2(θ̃, D̃) =
n/(1 + n), therefore the correlation increases in n.
9More precisely, in equilibrium, Pλ = hλ(θ̃, z̃) is a random variable, where hλ is a deterministic
function depending on λ.
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Lemma 2.2. The expected utilities for both informed and uninformed are decreasing

in λ: V ′I (λ) < 0, V ′U(λ) < 0. The same applies to the quantity

γ(λ) = 1− VI(λ)

VU(λ)
, (2.8)

in that γ′(λ) < 0 for λ ∈ [0, 1].

Note that γ(λ) measures the potential utility gain of being informed relative to

being uninformed. This lemma says that the more informed traders in the market,

the less incentive to become informed.

Back to utility U(pi;λ), we assume trader i takes λ as given when choosing his

optimal probability p∗i . More precisely, each trader forms an expectation about the

whole vector (pj)j∈(0,1) and traders’ probabilistic choices result in a non-cooperative

strategic game. By the first order condition of (2.7), trader i’s probabilistic choice

p∗i satisfies

αµc′(p∗i ) =
γ(λ)

1− p∗i γ(λ)
. (2.9)

Note that (2.9) can in general have multiple solutions, the following lemma provides

a necessary and sufficient condition to guarantee existence and uniqueness of the

solution.

Lemma 2.3. Suppose λ ∈ [0, 1] is fixed. A necessary and sufficient condition for

U ′′(pi;λ) < 0, is given by

γ(λ) ≤ min
p

[
K(p)

2 +K(p)p

]
, (2.10)

where K(p) = (αµc′(p) + c′′(p)/c′(p)). In case c(p) = p2, (2.10) can be written as

γ(λ) ≤ 2αµ+ 1

2αµ+ 3
. (2.11)

Based on Lemma 2.3, taking the level of informed trading, λ, as given, in order

for the optimization problem to be well-defined, the relative utility gain of being

informed cannot be too large. Intuitively, traders pay more to increase their po-

tential information benefit. Note that the marginal cost of information acquisition

increases, while the marginal benefit of being informed decreases. Therefore, when

the potential information benefit is relatively low, it would dominate the cost and
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hence it is optimal to acquire informaiton. However, this can become the opposite

when the potential information benefit is too large. It is helpful to look at two

special cases, namely µ → ∞ and µ → 0. In the first case, the condition becomes

γ(λ) ≤ 1, which is always satisfied. Intuitively, when cost sensitivity is extremely

high, traders’ information choice converges to p∗ = 0, thus the equilibrium level of

informed trading λ = 0. In the second case, the condition becomes γ(λ) ≤ 1/3,

which is not always satisfied. Therefore, it is possible that U(pi, λ) exhibits more

than one local maxima.10

Note that the optimization scheme of the joint information and portfolio choice

for trader i can be separated in two stages and solved using backward induction.

At t = 1, trader i’s type is revealed. Given his type, his portfolio choice x∗i can

be determined and hence the value functions, VI(λ) and VU(λ), can be computed.

At t = 0, traders play an information game. By averaging the likelihood of being

informed and forming an expectation about other traders’ actions, traders strate-

gically choose optimal strategies, (p∗i )i∈(0,1). Finally, to close the model, we require

λ =
∫ 1

0
p∗i di, i.e., the market fraction of informed traders must be consistent with

traders’ strategic probabilistic choices in a Nash equilibrium. Formally, we introduce

the following definition of equilibrium for information choice.

Definition 2.1. The probabilities p∗ = (p∗i )i∈(0,1) and (expected) market fraction of

informed traders λ are in equilibrium if

(i) p∗ = (p∗i )i∈(0,1) is a Nash equilibrium, meaning that for every i ∈ (0, 1),11

U(p∗i ;λ) ≥ U(pi;λ) for all pi ∈ [0, 1];

(ii) the following consistency condition is satisfied 12

λ = E
[∫ 1

0

ω∗i di

]
=

∫ 1

0

p∗i di, (2.12)

10For example, for n = 6, and by fixing parameters of the model at level ξ0 = 1, vε = 0.1, α = 0.5
and µ = 1.574, the value of U reaches two local maxima at p = 0.7 and at p = 1. Moreover, the
expected utility at the two local maxima is approximately −0.5871 for both of them.
11With a slight abuse of notation, we write U(pi;λ) in place of U(pi; p

∗
−i), where p∗−i = (p∗j )j 6=i. In-

deed, the only payoff-relevant variable for the information game is λ; moreover, having a continuum
of traders, the contribution of trader i on the realization of λ is negligible.
12At the equilibrium, the expectations are realized so that the fraction of informed, λ, exactly
matches the value expected by the traders when using the revealed vector of probabilities p∗.
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here ω∗i is the random variable associated with the optimal probability p∗i ;

We now characterize the equilibrium fraction of informed traders and market

price and their implications. For clarity, we summarize in one unique modeling

assumption the few conditions ensuring the existence of a unique equilibrium λ,

monotonically decreasing in the cost sensitivity parameter µ, in case the cost c(p)

is quadratic. These will be the conditions we will assume when analysing welfare

implications in the remainder of this article.

Assumption 2.2. The cost for information is quadratic, namely, µc(p) = µ p2.

Moreover, the following conditions on parameters hold true:

n ≤ 3; µ > µ̄ ≡ 1

2α

γ(1)

1− γ(1)
=

1

2α

(√
n(n+ 1) + 2ξ0

n(n+ 1) + ξ0

− 1

)
,

The first condition, n ≤ 3, guarantees that trader’s optimization problem is well-

defined for any level of informed trading, i.e., λ, in equilibrium. Note that a value

of n between 2 and 3 is consistent with real financial markets. Brogaard, Nguyen,

Putniņš and Wu (2020) reports a 31% noise to total variance ratio for equity markets,

corresponding to n ≈ 2.23. The second condition, together with n ≤ 3, guarantees

the existence of a unique equilibrium 0 ≤ λ < 1, where λ decreases in µ.13

Proposition 2.4. (Information Choice Equilibrium)

Under Assumption 2.2, the level of informed trading, λ, satisfies

αµ c′(λ) =
γ(λ)

1− λγ(λ)
, (2.13)

where λ is unique and decreasing in µ, and

γ(λ) ≤ 1

2
. (2.14)

13For more details, see Appendix B. Note that, when µ ≤ µ̄, λ is fixed at 1. In this case, the
welfare can be improved as the cost decreases further (as in Grossman-Stiglitz model). However,
we are interested in whether the decrease in the cost and hence the increase in informed trading
can improve the welfare. Moreover, we know that the full-information equilibrium λ = 1 is Pareto-
inefficient, since it is always dominated by the no-information equilibrium λ = 0, even if information
is costless (µ = 0). Therefore, we do not consider the corner equilibrium λ = 1 in this paper.
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Several features of Proposition 2.4 deserve comments. First, while the financial

market equilibrium is identical to that in the Grossman-Stiglitz model, the informa-

tion acquisition decision equilibrates differently. In the absence of information ac-

quisition uncertainty, the Grossman-Stiglitz model requires VI(λ)eαc = VU(λ) where

c > 0 is a fixed cost. Thus, informed trading increases as information acquisition

cost c decreases. In the probabilistic-choice model, due to ex-ante homogeneity of

investors, every trader makes the same optimal probabilistic choice p∗i = p∗(λ) = λ,

which satisfies (2.13). Intuitively, the optimal probability choice p∗ and hence level

of informed trading λ increase when the cost sensitivity µ decreases.14

Second, market exhibits strategic substitutability in the probabilistic choices. As-

sume a quadratic cost function, solving the first order condition (2.9) gives the

following optimal probability,

p∗(λ) =
αµ−

√
α2µ2 − 2αµγ2(λ)

2αµγ(λ)
, (2.15)

which equals to λ after we substitute αµ = γ(λ)/(2λ(1−λγ(λ))).15 It can be shown

from (2.15) that dp∗(λ)/dλ = (∂p∗/∂γ)γ′(λ) < 0, which implies that more informed

trading reduces the incentives for traders to increase their optimal probability choice.

Furthermore, note that market efficiency can be measured by the correlation coeffi-

cient ρθ = Corr(P̃ , θ̃), which based on the equilibrium price in (2.5) can be written

as

ρθ(λ)2 =
1

1 +m(λ)
, m(λ) =

ξ0

λ2n(1 + n)
. (2.16)

Therefore, for given information quality and risk-sharing incentives, higher market

efficiency reduces the potential utility gain of being informed, since γ(λ) = 1 −

1/
√

1 + n(1− ρθ(λ)2) according to (2.9).

Third, based on (2.16), more informed trading improves market efficiency but,

since V ′I (λ) < 0 and V ′U(λ) < 0 (as seen in Lemma 2.2), is detrimental to the

14This holds true in particular under Assumption 2.2. We provide more general sufficient conditions
for the uniqueness in Appendix B. In principle, there could be multiple equilibria in λ for the
fixed point argument (2.13) even if the optimization problem is well-defined in p∗. We leave this
intriguing discussion on multiple equilibria for future research.
15There is a second solution p∗ = (αµ +

√
α2µ2 − 2αµγ2(λ))/(2αµγ(λ)), which can be ruled out

under Assumption 2.2.
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expected utilities of informed and uninformed traders. This may seem counter-

intuitive, since more informed trading helps to resolve payoff uncertainty which

should improve expected utility for traders. However, as Kurlat and Veldkamp

(2015) explain, “decreasing risk lowers the equilibrium return and systematically

raises the assets average price. For welfare, this means that information reduces

the assets risk, but also implies lower return. With exponential utility and normally

distributed payoffs, the return effect always dominates.” Interestingly, this return

effect can be traced back to the residual risk faced by traders. In fact, traders’

squared expected utilities can be written as16

V 2
I (λ) =

V ar[R̃|θ, P ]

V ar[R̃]
, V 2

U (λ) =
V ar[R̃|P ]

V ar[R̃]
. (2.17)

Since V ′K(λ) < 0, K = I, U , from (2.17) we can conclude that, because dV 2
K(λ)/dλ >

0, more informed trading actually increases the residual risk faced by traders, i.e., it

increases the conditional return variance as a proportion of the total return variance,

hence is detrimental to traders’ expected utilities.

In the Grossman and Stiglitz model, since welfare is measured by VU(λ), informed

trading is always welfare reducing, hence information acquisition and more efficient

markets are not socially desirable (with respect to welfare). However, with informa-

tion acquisition uncertainty, this is not necessarily true for traders’ ex-ante welfare.

As we show in Section 3, information acquisition can be welfare improving under

certain market conditions.

3. Welfare Analysis

This section examines the ex-ante welfare of the utility-maximizing traders in the

noise-trader model in Section 2. The welfare can be measured as a function of the

state variable λ only by virtue of the first order condition (2.13),

W(λ) ≡ U(p∗, λ) = V̄ (p∗, λ)eΦ(p∗,λ), p∗ ≡ p∗(λ) = λ, (3.1)

16Note that, for K = I, U , VK(λ) = −1/
√

1 + ξK(λ) and ξK(λ) = V ar{E[R̃|FK ]}/V ar[R̃|FK ].

Therefore, V 2
K(λ) = V ar[R̃|FK ]/(V ar{E[R̃|FK ]}+ V ar[R̃|FK ]). Then (2.17) follows from the law

of total variance.
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where

V̄ (p∗, λ) = p∗VI(λ) + (1− p∗)VU(λ), Φ(p∗, λ) =
c(p∗)

c′(p∗)

γ(λ)

1− p∗γ(λ)
.

The marginal welfare can be separated into two components,

W ′(λ)

−W(λ)
=

1

−U
∂U
∂p∗

+
1

−U
∂U
∂λ

=
γ(λ)

1− λγ(λ)
− ∂Φ

∂p∗︸ ︷︷ ︸
information-gain effect

+
λV ′I (λ) + (1− λ)V ′U(λ)

−V̄ (p∗, λ)
− ∂Φ

∂λ︸ ︷︷ ︸
informed-trading effect

. (3.2)

This decomposition disentangles the effect of an increase in the optimal probability

choice, i.e., an increase in p∗ while holding λ constant, from an increase in the level

of informed trading, i.e., an increase in λ while holding p∗ constant. We refer the

first as the information-gain effect and the second as the informed-trading effect.

To better understand their joint effect, we first examine each effect separately. For

tractability, from now on we assume that Assumption 2.2 holds true. This allows

us to give a sharper economic intuition about the marginal contributions of the two

effects on the marginal welfare.

3.1. Information-Gain Effect. This effect characterizes a trade-off between the

relative benefit of being informed, γ(λ)/(1−λγ(λ)), and the cost, ∂Φ(p∗, λ)/∂p∗|p∗=λ,

due to information acquisition in equilibrium. Note that, for c(p) = p2, the marginal

cost of the information acquisition is always positive, i.e.,

∂Φ(p∗, λ)

∂p∗

∣∣∣∣
p∗=λ

=
1

2

γ(λ)

(1− λγ(λ))2
> 0.

Therefore, the information-gain effect reflects the net effect of the trade-off,

1

−U
∂U
∂p∗

=
γ(λ)

1− λγ(λ)
− ∂Φ

∂p∗
=
γ(λ)(1− 2λγ(λ))

2(1− λγ(λ))2
,

which is positive if and only if λγ(λ) < 1/2. Note that the first component in

the information-gain effect, marginal benefit of an increase in p∗, is decreasing in λ

while the second component, marginal cost of an increase in p∗, is increasing in λ.

Hence, we require either λ or γ(λ) to be low for the overall effect to be positive.

Under Assumption 2.2, γ(λ) < 1/2, therefore, the information-gain effect is strictly
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positive. Interestingly, a small γ(λ) can ensure traders’ optimization problem is

well-defined and also that welfare in equilibrium improves when traders’ optimal

probabilistic information choice increases. The same intuition for γ(λ) being small

applied to Lemma 2.3 also applies here.

Moreover, note that the information-gain effect is non-existent in the Grossman-

Stiglitz model, since in their equilibrium, informed and uninformed traders are as-

sumed to have the same expected utility. In contrast, in the probabilistic-choice

model, information-gain effect comes from traders’ anticipation of potentially be-

coming informed next period, and is strictly positive in equilibrium under Assump-

tion 2.2.

3.2. Informed-Trading Effect. This effect characterizes the traditional trade-off

between the informed trading, (λV ′I (λ)+(1−λ)V ′U(λ))/(−V̄ (λ, λ)), and the marginal

cost of informed trading, ∂Φ(p∗, λ)/∂λ, in the Grossman-Stiglitz model. Note that

λV ′I (λ) + (1− λ)V ′U(λ)

−V̄ (λ, λ)
= −

[
Γ1(λ)

V ′I
VI

+ (1− Γ1(λ))
V ′U
VU

]
,

where Γ1(λ) = λ(1 − γ(λ))/(1 − λγ(λ)) > 0. Based on the discussion in Section

2, due to the fact that V ′K(λ)/VK(λ) = (1/2)(dV 2
K(λ)/dλ)/V 2

K(λ) > 0 for K =

I, U , the informed trading increases the residual risk faced by traders and therefore

contributes to the marginal welfare negatively. Also, note that

∂Φ(p∗, λ)

∂λ

∣∣∣∣
p∗=λ

=
1

2

λγ′(λ)

(1− λγ(λ))2
.

Since γ′(λ) < 0, the marginal cost of informed trading is always negative (as a cost

saving in the Grossman-Stiglitz model), which contributes to the marginal welfare

positively. The informed-trading effect reflects the net effect of this trade-off,

1

−U
∂U
∂λ

= −
[
Γ(λ)

V ′I
VI

+ (1− Γ(λ))
V ′U
VU

]
,

where Γ(λ) = λ(1−2λγ)(1−γ)
2(1−λγ)2

. Therefore, under Assumption 2.2, the informed-trading

effect is negative. This means that a higher level of informed trading can be detri-

mental to welfare (as in the Grossman-Stiglitz model). Intuitively, more informed



20

trading increases the residual risk faced by traders and hence decreases their ex-

pected utilities. Although there is a cost saving, the overall welfare effect of informed

trading remains negative.

3.3. Marginal Welfare. Based on the above analysis, we see that the two effects

work in opposite direction, and their trade-off determines the marginal welfare.

Proposition 3.1. (Marginal Welfare) Under Assumption 2.2, marginal welfare is

positive (i.e., W ′(λ) > 0) if and only if

γ(λ)(1− 2λγ(λ))

2(1− λγ(λ))2
> Γ(λ)

V ′I (λ)

VI(λ)
+ (1− Γ(λ))

V ′U(λ)

VU(λ)
. (3.3)

Proposition 3.1 shows that information acquisition, albeit costly, can be beneficial

to welfare. Particularly, a positive marginal welfare requires the information-gain

effect to dominate the informed-trading effect. To explore market condition for

such dominance, we first examine a special case of the welfare improvement at no-

information equilibrium. Applying Proposition 3.1 to the case of λ = 0, we have the

following result.

Corollary 3.1. At the no-information equilibrium,

(i) marginal welfare is positive (i.e., W ′(0) > 0) if and only if

1

2

(
1− 1√

1 + n

)
︸ ︷︷ ︸
information-gain effect

+
−nξ0

1 + ξ0︸ ︷︷ ︸
informed trading effect

> 0; (3.4)

(ii) if marginal welfare is positive (i.e., W ′(0) > 0), then ξ0 < 1/3.

At the no-information equilibrium, Corollary 3.1 (i) provides an explicit expression

for the information-gain and informed-trading effects with respect to information

quality (n) and risk-sharing incentives (ξ0). We have two observations about the

necessary and sufficient condition (3.4). First, the informed-trading effect is stronger

when risk-sharing incentives are high, hence informed trading brings more distortion

to risk-sharing. Second, both informed-trading and information-gain effects are

stronger when information quality is high. Intuitively, a more precise signal helps

informed traders to resolve more payoff uncertainty. On the one hand, it gives

informed traders more advantage over the uninformed traders. On the other hand,
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it also leads to a worse return effect. To see the net effect of n on the marginal

welfare, we rewrite condition (3.4) as

ξ0

1 + ξ0

<
1

2n

(
1− 1√

1 + n

)
.

Since the function on the right hand side decreases in n, the net effect of n is

negative. Therefore, we conclude from these two observations that the effects of

both risk-sharing incentives and information quality on the marginal welfare at

no-information equilibrium are unambiguously negative. This implies that welfare

improvement at the no-information equilibrium is more likely in an economy with

both low risk-sharing incentives and information quality.

Corollary 3.1 (ii) shows that when ξ0 > 1/3, the negative informed-trading effect

always dominates at the no-information equilibrium. Intuitively, when risk-sharing

incentives are sufficiently strong, risk-sharing distortion due to informed trading

dominates marginal welfare, as a result, information acquisition is always welfare

reducing and the most preferable situation (from a welfare viewpoint) is the no-

information equilibrium.

The above intuitions on the roles of information quality and risk-sharing incentives

also apply to the welfare improvement in general asymmetry information equilibrium

λ > 0. Under Assumption 2.2, it can be shown that

d

dλ

(
1

−U
∂U
∂p∗

)
= −2λγ(λ)3 − γ′(λ)(1− 3λγ(λ))

2(1− λγ(λ))3
< 0. (3.5)

This implies that the information-gain effect is always decreasing in informed trading

λ. The behavior of the informed trading effect with respect to λ is however less

trivial. At the no-information equilibrium, assuming ξ0 < 1/3, the welfare cost of

informed trading satisfies

d

dλ

(
1

U
∂U
∂λ

) ∣∣∣∣∣
λ=0

=
n

1 + ξ0

+

(
n

1 + ξ0

)2 [
(1− ξ2

0) + (1− ξ0)
]
> 0. (3.6)

Therefore, with more informed trading, the information-gain effect weakens while

the informed trading effect strengthens. After informed trading reaches a certain

level, the negative informed trading effect prevails.
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From Corollary 3.1, we have the dominance of the information-gain effect at λ = 0

under condition (3.4). Since the information-gain effect is decreasing for λ ∈ [0, 1),

while the informed-trading effect is increasing in λ for small λ, there exists a λ∗ > 0

at which W ′(λ∗) = 0, From Proposition 2.4, this implies that, corresponding to λ∗,

there is a unique cost sensitivity µ∗ = µ(λ∗) such that marginal welfare W ′(λ) is

positive for µ > µ∗. We call λ∗ the Pareto-optimal state for the utility-maximizing

traders (speculators) who provide liquidity to noise traders. We now provide a

sufficient condition for the existence of a unique Pareto-optimal state.

Corollary 3.2. Under Assumption 2.2 and for ξ0 < 1/11, there exists an optimal

cost sensititivty µ∗ > 0 that corresponds to the Pareto optimal state λ∗ > 0 such that

marginal welfare W ′(λ) > 0 for λ ∈ [0, λ∗) and µ > µ∗.

In Proposition 2.4, we have seen that the unique equilibrium informed trading λ

decreases in µ. Corollary 3.2 further confirms that the welfare improvement is more

likely to occur at higher level of cost sensitivity, µ > µ∗, or correspondingly at lower

level of informed trading λ ∈ [0, λ∗). The sufficient condition further confirms that

welfare improvement is more likely in an economy with both low risk-sharing incen-

tives (ξ0) and information quality (n), achieving Pareto optimality at λ∗. Note that

the lower bound for ξ0 corresponds to a Sharpe ratio of 0.3 in the no-information

equilibrium, below this level any information quality, n < 3, can potential improve

welfare for small enough λ. Intuitively, when traders have relatively less incentives

to trade for risk-sharing purposes, the welfare cost of informed trading is also rel-

atively small, hence it is easier for the anticipatory welfare benefit of probabilistic

information choice to dominate traders’ marginal welfare.

3.4. Numerical Analysis. We now perform a numerical analysis to verify our re-

sults and more importantly examine the market conditions for welfare improvement

with respect to informed trading (λ), information quality (n) and risk-sharing in-

centive (ξ0). Results are presented in Figure 3.1, from which we have the following

observations.

Firstly, information acquisition is less likely to improve the welfare in markets with

relatively high information quality (n), risk-sharing incentives (ξ0), and informed
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Figure 3.1. Panel (A) shows the parameter region of (n, ξ0) in which
W ′(λ) > 0 for a given λ. Panel (B) shows W(λ) for 0 ≤ λ ≤ 1, where
ξ0 = 0.05 and n is chosen in such a way that W ′(λ∗) = 0. Panels (C)
and (D) show information-gain benefit versus informed-trading cost, where
ξ0 = 0.05 and n = 0.91 in (C) and n = 0.02 in (D).

trading level (λ). This is shown in Panel (A) that the parameter region of (n, ξ0) for

W ′(λ) shrinks in both n and ξ0. This observation is consistent with the analytical

results obtained above.

Secondly, the region for W ′(λ) > 0 shrinks in λ, and we provide the following

explanation. As the level of informed trading rises, there is less utility to be gained

by being informed, this is illustrated in both Panels (C) and (D).17 They show that

17To illustrate the trade-off between the two effects, since the informed trading effect is negative,
we plot (1/U)∂U/∂λ, as the welfare cost of informed trading in Panels (C) and (D).
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the information-gain effect (the solid lines) is decreasing in λ, while the informed-

trading effect (the dotted lines) is initially increasing and then decreasing in λ when

λ is high enough and information quality is relatively high.

Thirdly, for given parameters n and ξ0, the welfare function is hump-shaped,

reaching the Pareto-optimal state at λ∗ at whichW ′(λ∗) = 0, as illustrated in Panel

(B). Since high information acquisition cost is associated with larger information

gain, one could interpret the cost sensitivity, µ as a tax on information acquisition.

Therefore, when a policymaker is able to tighten or loosen the restrictions on finan-

cial market regulations, our results show that a decrease in the information tax rate,

from µ to µ∗, can result in an welfare improvement in informed trading at the level

of λ ∈ [0, λ∗).

Based on this observation, we next provide some welfare implications by focus-

ing on the dependence of the Pareto-optimal state λ∗ (and hence the optimal cost

sensitivity µ∗) on the information quality (n) and risk-sharing incentive (ξ0), as

illustrated in Figure 3.1(B).

3.5. Welfare Implications. With market characteristics exogenously specified with

respect to information quality (n) and risk-sharing incentives (ξ0), we first examine

how a policymaker should adjust cost sensitivity µ (and hence the informed trading

level λ) in order to maximize trader’ welfare. We then examine how such policy

adjustment changes with information quality (n) and risk-sharing incentive (ξ0).

Based on the hump-shaped welfare function, we conduct an analysis on the Pareto-

optimal welfare achieved. In Figure 3.2, for three different values of ξ0 and n <

3, we report: (A) the Pareto-optimal state λ∗; (B) the optimal cost sensitivity

µ∗; (C) welfare at the Pareto-optimal state relative to that at the no-information

equilibrium; and (D) the corresponding information efficiency ρθ(λ
∗). The results

provide several welfare implications.

Firstly, Panels (A) and (B) show that, to maximize welfare, a policymaker should

choose a higher cost sensitivity to discourage information acquisition when both

information quality and risk-sharing incentives are high. This is consistent with

the literature (e.g., Allen, 1984). Intuitively, with high information quality, traders
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Figure 3.2. The relationship between information quality n and Pareto-
optimal state λ∗ in Panel (A), cost sensitivity µ(λ∗) in Panel (B), welfare
W(λ∗) in Panel (C) and market efficiency ρθ(λ

∗) in Panel (D), here W0 =
−1/
√

1 + ξ0 is the welfare in the no-information equilibrium.

have more incentives to acquire information, which increases the distortion of risk-

sharing, in particular, when investors’ risk-sharing incentives are high. Therefore,

to improve welfare the policymaker can make information acquisition more costly,

which reduces informed trading and thus the distortion of risk-sharing. Note that

the Pareto-optimal state λ∗ decreases monotonically with information quality, but

not always in risk-sharing incentives. Moreover, when risk-sharing incentives are

low, λ∗ decreases at a slower rate.

Secondly, Panel (C) shows that the Pareto-optimal welfare decreases in the risk-

sharing incentives but is concave in information quality, in particular when risk-

sharing incentives are high. As we have discussed, high risk-sharing incentives
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increase the distortion of risk-sharing and hence reduce welfare. The welfare im-

provement from the no-information equilibrium reaches its maximum at an interme-

diate level of information quality, the improvement is greater for lower risk-sharing

incentives. The welfare benefit of information acquisition can be substantial, es-

pecially when risk-sharing incentives are low. Table 1 shows that when ξ0 = 0.01,

i.e., the Sharpe ratio at the no-information equilibrium is
√
ξ0 = 0.1, and the risk-

sharing benefit 1 +W0 ≈ 0.05%. In this case, having an informed trading level of

λ∗ = 0.071 by a cost sensitivity of µ = 1.195 can lead to a welfare improvement

of ∆W = 0.0374% (when n = 0.72), which is a 68% increase. This (proportional)

welfare improvement becomes 120% when ξ0 = 0.005 and λ∗ = 0.054, and 351%

when ξ0 = 0.001 and λ∗ = 0.026.

ξ0 = 0.01 ξ0 = 0.005 ξ0 = 0.001
1 +W0 4.963 2.491 0.500
∆W 3.374 2.990 1.757
∆W/(1 +W0) 0.680 1.200 3.514
n 0.72 0.84 1.03
λ∗ 0.071 0.054 0.026
µ(λ∗) 1.195 1.538 3.164

Table 1. Welfare benefit of risk-sharing 1 +W0 (in basis points) at the
no-information equilibrium, and welfare improvement ∆W ≡W(λ∗)−W0

(in basis points), relative improvement ∆W/(1 +W0), information quality
n, level of informed trading λ∗ and cost sensitivity µ(λ∗) at the Pareto-
optimal state.

Moreover, together with Panel (A), the Pareto-optimal welfare reflects a trade-off

between the information quality (n) and quantity (λ∗). The concave Pareto-optimal

welfare in Panel (C) also indicates that a globally maximum welfare can be achieved

with relative high information quality and cost when risk-sharing incentive is low,

but with relative low information quality and cost when risk-sharing incentive is

high.

Thirdly, Panels (C) and (D) show that market efficiency is not necessarily in con-

flict with welfare, they can both improve with higher information quality provided

that the market is at the Pareto-optimal state.

Overall, our results show that, to maximize traders’ welfare, policymakers should

increase cost sensitivity (µ∗) in response to high information quality, in order to drive
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down informed trading to the Pareto-optimal state (λ∗), however, not necessarily

to zero (no-information equilibrium). Moreover, with intermediate level of informa-

tion quality and low risk-sharing incentives, the relative welfare improvement from

the no-information equilibrium can be substantial. In other words, there can be a

large welfare loss for the liquidity providers in the market if the opportunity for

information acquisition was completely absent.

4. Modelling Trading Motives Explicitly

In this section, rather than assuming exogenous noise in supply, we follow Man-

zano and Vives (2011) and Bond and Garcia (2018) to motivate trading by assuming

that traders receive private endowment shocks.

Each trader i receives an endowment, eiD̃, at the end of the trading period. Thus,

trader i’s future wealth is given by

W̃i = (xi + ei)R̃ + eiP̃ − µ c(pi), R̃ = D̃ − P̃ . (4.1)

We assume ei is known to trader i, whereas other traders only have common

knowledge about the distribution function from which ei is drawn. In particular,

ei = z̃+ ũi, where z̃ ∼ N (0, vz) is an aggregate endowment shock and ũi ∼ N (0, vu)

is an idiosyncratic shock, thus ve ≡ Var[ẽi] = vz + vu.

4.1. Optimization problem. As before, trader i’s objective is to determine the

optimal probability p∗i of observing the private signal θ, in order to maximize his

expected utility of terminal wealth,

U(pi;λ, ei) ≡ [piVI(λ, ei) + (1− pi)VU(λ, ei)] e
αµ c(pi), (4.2)

where

VI(λ, ei) = E
{
E
[
−e−α(x∗I (θ,P,ei)R̃+eiD̃)

∣∣∣θ, P, ei] ∣∣∣ei}
and

VU(λ, ei) = E
{
E
[
−e−α(x∗U (P,ei)R̃+eiD̃)

∣∣∣P, ei] ∣∣∣ei}
are trader i’s expected utility, depending on whether or not he observes the private

signal θ. Therefore, beside θ, trader i also has a different private signal about
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his own endowment shock ei. Intuitively, ei helps trader i to forecast the aggregate

endowment shock z̃, which is negatively correlated with the equilibrium price P̃ . For

example, after observing the same price, a trader who receives a positive endowment

shock will infer a larger value for θ than a trader who receives a negative endowment

shock.

Conditional on his information set, trader i’s optimal portfolio is given by

x∗i =


x∗I(θ, P, ei) =

E[R̃|θ, P, ei]
αVar[R̃|θ, P, ei]

− ei, Fi = {θ, P, ei};

x∗U(P, ei) =
E[R̃|P, ei]

αVar[R̃|P, ei]
− ei, Fi = {P, ei}.

. (4.3)

As before, we conjecture a linear equilibrium price,

P̃ = bθθ̃ − bz z̃. (4.4)

Next, we characterize the solution to traders’ optimization problem. The optimal

demands for the uninformed and informed traders are given by

x∗U(P, ei) =
−(1− κ)P − κβe,P ei

αvU
− ei (4.5)

and

x∗I(θ, P, ei) =
θ − P
αvε

− ei, (4.6)

respectively, where κ = σθ,P/[vP −
σ2
e,P

ve
] and vU = vD

(
1− ρ2P,D

1−ρ2e,P

)
= vD − κσθ,P ,

also βe,P = σe,P/ve, σe,P = Cov[ẽi, P̃ ] and σθ,P = Cov[θ̃, P̃ ].

We now compute expected utilities for the informed and uninformed traders, i.e.,

VI(λ, ei) and VU(λ, ei). First, trader i’s welfare conditional on his information set is

given by

E
[
−e−αW̃i |Fi

]
= − exp

{
−αeiP −

1

2

χ2
i

vi

}
, (4.7)

where χi ≡ E
[
R̃|Fi

]
and vi ≡ Var

[
R̃|Fi

]
are the expectation and variance of return

conditional on trader i’s information set. Since, conditional on the endowment

shock ei, the price P and conditional expected return χi follow a bivariate normal

distribution, we can obtain the following expression for trader i’s welfare given his

own endowment shock.
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Proposition 4.1.

VK(λ, ei) = −VK(λ) exp

{
1

2
A(λ)e2

i

}
, VK(λ) =

1√
1 + ξK(λ)

, (4.8)

where

A(λ) =
α2(vP |evD − σ2

θ,P )− β2
e,P − 2α(vD − σθ,P )βe,P

vP |e + vD − 2σθ,P
,

and

ξK(λ) =


(
vP |e + vθ − 2σθ,P

)
/ve, Fi = {θ, P, ei};(

vP |e + (vD − vU)− 2σθ,P
)
/vU , Fi = {P, ei},

vP |e = vP−
σ2
e,P

vz + vu
.

From Proposition 4.1, the relative gain in expected utility of being informed is

independent of the realized endowment shock ei, since

γ(λ) =
VI(λ, ei)− VU(λ, ei)

−VU(λ, ei)
= 1−

√
vε

vD − κσθ,P
. (4.9)

Interestingly, the solution to trader i’s optimization problem as in (4.2) does not

depend on the trader-specific endowment shock and boils down to (2.9), just as in

the baseline model. Also, the concavity condition in pi, U
′′
(pi;λ, ei) < 0, is satisfied

under Assumption 2.2.

4.2. Equilibrium. Since the risky asset is in zero net supply, market clearing re-

quires ∫ 1

0

[λx∗I(θ, P, ei) + (1− λ)x∗U(P, ei)] di = 0, (4.10)

where λ is the fraction of informed traders. Next proposition determines the coeffi-

cient bθ and bz, and the level of informed trading λ in equilibrium.

Proposition 4.2. Under Assumption 2.2, for given λ ∈ [0, 1], let Ψ ≡ vz/(vz + vu).

Then there exists a linear equilibrium price of the risky asset,

P̃ = bθθ̃ − bz z̃, (4.11)

where

bθ =
1

1 + x−2 v
−1
θ +λv−1

ε

v−1
u +v−1

z

+
λ

vε+λvθ
vε+vθ

+ x2 v
−1
u +v−1

z

v−1
ε +v−1

θ

, (4.12)
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x ≡ bθ/bz solves

x =
1

αvε

(
λ+

1− λ
Ψ−1 + x−2(v−1

ε + v−1
θ )vu

)
, (4.13)

and λ is the solution of

αµ c′(λ) =
γ(λ)

1− λγ(λ)
, (4.14)

where γ(λ) is given by (4.9).

Proposition 4.2 shows that the equilibrium information acquisition is exactly the

same as in the baseline model, while the equilibrium price shares the same linear

structure but with more complicated coefficients depending on the size of the en-

dowment shock, in addition to other parameters in the baseline model.

4.3. Welfare. The welfare of trader i, assuming c(p) = p2, given his endowment

shock ei, can be measured by

W(λ; ei) ≡ U(p∗;λ, ei) = V̄ (p∗, λ)eΦ(p∗,λ,ei), p∗ ≡ p∗(λ) = λ, (4.15)

where

V̄ (p∗, λ) = p∗VI(λ) + (1− p∗)VU(λ)

and

Φ(p∗, λ, ei) =
p∗

2

γ(λ)

1− p∗γ(λ)
+

1

2
A(λ)e2

i .

Comparing to the baseline setting, the welfare function shows an extra welfare cost,

A(λ)e2
i /2, which characterizes the cost of the hedging on the endowment risk. It in-

creases with the size of the endowment shock. Intuitively, a trader with a relatively

large endowment shock (ei) trades to hedge endowment risk more than to speculate

on the future payoff. Thus, the hedging component can dominate the speculative

component when the endowment shock is large (as in (4.3)). As a result, in equi-

librium, traders with relatively large endowment shocks (hedgers) must compensate

those with smaller endowment shocks (speculators) for supplying liquidity to absorb

the hedging demand.
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As in the baseline model, we decompose the marginal welfare into information-

gain effect and informed trading effect as follows,

W ′(λ; ei)

−W(λ; ei)
=

1

−U
∂U
∂p∗︸ ︷︷ ︸

information-gain effect

+
1

−U
∂U
∂λ︸ ︷︷ ︸

informed-trading effect

, (4.16)

where the information-gain effect

1

−U
∂U
∂p∗

=
γ(λ)(1− 2λγ(λ))

2(1− λγ(λ))2
(4.17)

and the informed-trading effect

1

−U
∂U
∂λ

= −1

2
A′(λ)e2

i︸ ︷︷ ︸
Hirshleifer effect

−
[
Γ(λ)

V ′I
VI

+ (1− Γ(λ))
V ′U
VU

]
, (4.18)

where Γ(λ) = λ(1−2λγ)(1−γ)
2(1−λγ)2

. The marginal welfare decomposition shows that, while

the information-gain effect has the identical expression as in the baseline model,

the informed-trading effect has an extra component reflecting the Hirshleifer effect,

which measures the increase in cost of hedging endowment risk due to increase in in-

formed trading (λ). The Hirshleifer effect is a further impediment to risk-sharing. In-

tuitively, informed trading reduces the incentives to trade of the speculators (traders

with little or no endowment shocks), thus it becomes more expensive for hedgers

(traders with larger endowment shocks) to execute their market orders. In other

words, informed trading increases the cost of liquidity. Due to the complex nature

of the equilibrium price, it is generally very difficult to analytically derive market

conditions for welfare improvement. Next, we consider two special cases where this

is possible.

First, we compare welfare between the no-information equilibrium (λ = 0) and

the full-information equilibrium (λ = 1). Note that for λ = 0, the equilibrium price

becomes P̃ = αvDz̃ and traders’ optimal portfolios are given by x∗U(P, ei) = −P
αvD
−ei.

On the other hand, when λ = 1, the equilibrium price and trader i’s optimal portfolio

are given by P̃ = θ̃ − αvεz̃ and x∗I(θ, P, ei) = θ−P
αvε
− ei, respectively. The following

proposition compares traders’ welfare in the two equilibria.
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Proposition 4.3. Given the welfare of trader i characterized by (4.8), trader i is

always better off at the no-informed-trading than at the full-informed-trading equi-

librium, i.e., W(0; ei) >W(1; ei) for any ei.

The result in Proposition 4.3 is consistent with the noise-trader model. Note that

the difference in welfare is purely due to the reduction in payoff uncertainty since

traders have symmetric information in both equilibria. As explained by Goldstein

and Yang (2017), “disclosure harms investors through destroying trading opportuni-

ties”.

For the second special case, we take the limit as vu →∞, thus endowment shocks

are no longer informative about the private signal θ̃, and equilibrium converges to

that in the noise-trader model. In this case, we can extend the result in Corollary

3.1 at the no-information equilibrium to reflect the Hirshleifer effect.

Proposition 4.4. Assume vu → ∞, information-acquisition improves trader i’s

welfare at the no-information-acquisition equilibrium (i.e., W ′(0; ei) ≥ 0) if and

only if

− nξ0

1 + ξ0

[
1 +

e2
i

1 + ξ0

]
︸ ︷︷ ︸

informed-trading effect

+
1

2

(
1− 1√

1 + n

)
︸ ︷︷ ︸
information-gain effect

> 0. (4.19)

Proposition 4.4 shows that the Hirshleifer effect has a negative effect on marginal

welfare, and the welfare loss increases with information quality and risk-sharing

incentive. This shows that informed trading is more detrimental to the welfare

of those traders with relatively large endowment shocks. Therefore, in order for

marginal welfare to be positive, the anticipatory welfare benefit of information-gain

must be large enough to offset the cost of informed trading due to both return and

Hirshleifer effects. Next, we numerically examine whether the result is robust for

vu ∈ (0,∞).

4.4. Numerical Analysis. In Figure 4.1, Panels (A) and (B) show the parameter

regions of (n, ξ0) in which information acquisition is welfare improving at the no-

information equilibrium with λ = 0 for different values of vu and e. We observe

that marginal welfare W ′(0, e) is more likely to be positive when endowment shock,
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Figure 4.1. Panels A and B show the parameter regions of (n, ξ0) in

which W ′(0; e) > 0, where e = 0 and
√
vu/vz ∈ {∞, 3, 2.5, 2} in Panel A,

and e/
√
ve ∈ {0, 0.1, 0.2, 0.3} and

√
vu/vz = 3 in Panel B. Panels C and D

show the welfare improvement W(λ; e)−W(0; e), where n = 0.1 and ξ0 =

0.05.

e, and the idiosyncratic variance of endowment shock, vu, are small, which has the

following implications.

First, information acquisition is more likely to hurt those traders who demand

liquidity, whose optimal demand x∗i is mostly driven by the endowment shock ei

rather than the speculative component. Intuitively, informed trading distorts risk-

sharing and increases the hedging cost for endowment risk, which has a negative
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effect on their welfare. Therefore, for those traders with large hedging demands, the

Hirshleifer effect can dominate the information-gain effect.

Second, information acquisition is more likely to hurt traders’ welfare when indi-

vidual trader’s endowment shock ei is more informative about the aggregate endow-

ment shock z̃. Intuitively, taking λ as given, a higher correlation between ei and z̃

make price more informative. Therefore, when more payoff uncertainty is resolved,

it brings more distortion to risk-sharing, which enhances both the Hirshleifer and

return effects, resulting a large welfare cost.

Finally, Panels (C) and (D) plot the welfare function for different values of vu

and e. We find that the optimal state λ∗, where welfare W(λ∗, ei) is maximized,

is decreasing in ei. Moreover, for traders with a sufficiently large ei, λ
∗ = 0 (no-

information equilibrium) becomes the optimal state. Therefore, information acqui-

sition can have different welfare effects on traders, depending on the size of their

endowment shocks. In particular, information acquisition can be welfare-improving

for speculators who provide liquidity but welfare-reducing for hedgers who demand

liquidity.

4.5. Policy Implications. In terms of policy implications, the numerical results

show that the Pareto-optimal state is not unique in the endowment economy, where

noise trading is endogenized. This is because the relationship between welfare

W(λ; ei) and the state variable λ is different for traders with different endowment

shock ei. Consider the state λ∗0 where W ′(λ∗0, 0) = 0 (so that the welfare is maxi-

mized) for pure speculators who have no endowment risk, are thus not affected by

Hirshleifer effect. In this case, λ∗0 is the highest level of informed trading, above

which an increase in informed-trading will be harmful to the welfare of every trader,

i.e., W ′(λ, ei) < 0 for λ > λ∗0 and i ∈ (0, 1). Hence, this means that any λ∗ ∈ [0, λ∗0]

is a Pareto-optimal state, since deviating from λ∗ will be welfare improving for some

traders and welfare reducing for others. For example, in Panel (D), the optimal state

for a pure speculator is approximately λ∗0 = 0.2. Assume the current state λ < λ∗0,

an increase in λ would make the pure speculator better off, i.e., W ′(λ; 0) > 0, how-

ever, it would be welfare reducing for the trader (hedger) with ei = 0.3
√
ve, i.e.,
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W ′(λ; 0.3
√
ve) < 0. On the other hand, if the current state λ > λ∗0, a marginal

reduction in λ is Pareto-improving since, in this case, W ′(λ; ei) < 0 for all traders.

In the noise-trader model, making information acquisition less costly to encourage

information acquisition does not necessarily improve traders’ welfare. The above

analysis indicates that, with endowment shocks, decreasing cost sensitivity never

leads to Pareto-improvement. However, information acquisition can still be valuable

for traders with small endowment shock, i.e., the liquidity providers.

In general, our results suggest that, in an economy with endowment shocks, regu-

lators should never encourage information acquisition which leads to more informed

trading, since doing so will hurt traders with relatively large endowment risks and

high liquidity demand. Moreover, regulators should only discourage information

acquisition when there is excessive informed trading in the market, i.e., λ > λ∗0,

because otherwise doing so will be welfare-reducing for speculators with relatively

small endowment risks who provide liquidity.

5. Conclusion

In a standard pure-exchange economy with rational expectations when informa-

tion choices are made probabilistically, we find that information acquisition has two

opposing effects on traders’ marginal welfare, namely, the positive information-gain

effect and the negative informed-trading effect. The former is welfare-improving

whereas the latter is welfare-reducing, the net effect on marginal welfare depends

on the information quality, risk-sharing incentives and the cost sensitivity of infor-

mation acquisition.

In a noise-trader model, utility-maximizing speculators provide liquidity to noise

traders whose random demand is exogenously given. We find that the information-

gain effect tends to dominate the informed-trading effect in marginal welfare when

both risk-sharing incentives and information quality are low. In a more general-

ized model with endowment shocks, traders’ demand consists of both speculative

and hedging components. In this case, the welfare trade-off between information-

gain and informed-trading effects depends on the size of the endowment shock, and
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traders with large endowment shocks tend to experience a welfare reduction whereas

those with small endowment shocks experience a welfare improvement.

Overall, our results suggest that information acquisition can be very valuable,

especially to liquidity providers when risk-sharing incentives are low. Therefore,

regulations to level the playing field by minimizing information-asymmetry between

traders might actually be welfare-reducing for a significant proportion of traders.
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Appendix A. Proofs

To simplify the notation, we drop the trader-specific subscript i for all proofs in this

appendix.

A.1. Proof of Proposition 2.1. (i). The CARA-normal setting implies that traders’

optimal portfolio choices at time t = 1 follow the standard mean-variance type,

x∗K =


x∗I(θ, P ) =

E[R̃|θ, P ]

αVar[R̃|θ, P ]
, FI = {θ, P};

x∗U (P ) =
E[R̃|P ]

αVar[R̃|P ]
, FU = {P}.

(A.1)

The linear equilibrium price for the risky asset, P̃ , has the following structure

P̃ = bθθ̃ − bz z̃, (A.2)

where the coefficients bθ and bz are determined in equilibrium. Thus, we have

P̃ ∼ N (0, vP ), vP = b2θvθ + b2zvz

and

D̃|P ∼ N (βP,θP, vθ|P ), βP,θ =
σθ,P
vP

, vθ|P = vε + (1− ρ2
θ,P )vθ.

We introduce some notations; for any two random variables x̃ and ỹ,

vx ≡ Var[x̃], vy ≡ Var[ỹ], σx,y ≡ Cov[x̃, ỹ],

βx,y ≡
σx,y
vx

, ρx,y ≡
σx,y√
vxvy

, vx|y = Var[x̃|y]. (A.3)

Thanks to these new notations, it is easy to see that (A.1) can be rewritten as follows

x∗K =

 x∗I(θ, P ) = θ − P
αvε , FK = {θ, P};

x∗U (P ) = −PαvU , FK = {P},
(A.4)

where

vU =
vθ|P

1− βP,θ
=
vε + b2zvz

b2θvθ+b2zvz
vθ

1− bθvθ
b2θvθ+b2zvz

.

Next, to solve for the equilibrium price P , we apply the market clearing condition,

λx∗I(θ, P ) + (1 − λ)x∗U (P ) = z̃, and obtain the equilibrium price, P̃ = λv̄
vε
θ̃ − αv̄z̃, where

1/v̄ = λ/vε + (1−λ)/vU . By matching coefficient to the conjectured equilibrium price, we

obtain bθ = λv̄
vε

and bz = αv̄. Since bθ = λbz/(αvε), we obtain an explicit solution for v̄ by
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solving

λ

vε
+

(1− λ)
(

1− (λbz/α) vθ/vε
(λbz/α)2vθ/v2ε+b2zvz

)
vε + b2zvz

(λbz/α)2vθ/v2ε+b2zvz
vθ

=
bz
α

for bz and substituting the solution back into the expression for vU and v̄.

(ii). By substituting bθ = (λv̄/vε) and bz = αv̄ back into traders’ optimal demand

functions in (A.4) we obtain x∗I(θ, P ) and x∗U (P ) in (2.4).

A.2. Proof of Lemma 2.2. Given the explicit solution for bθ and bz, the expected utilities

of the informed and uninformed traders are given by

VI(λ) = VU (λ)(1− γ(λ)), VU (λ) = − 1√
1 + ξ(λ)

,

where

(1− γ(λ))2 =

(
VI(λ)

VU (λ)

)2

=
λ2n(n+ 1) + ξ0

(n+ 1) (λ2n+ ξ0)
(A.5)

and

ξ(λ) =
Var[E(R̃|P )]

Var[R̃|P ]
=

ξ2
0

(
λ2n+ ξ0

)
(λ2n(n+ 1) + ξ0(λn+ 1))2 , ξ(0) = ξ0. (A.6)

Note that 0 < γ(λ) < 1,

V ′I
VI

=
V ′U
VU
− γ′(λ)

1− γ(λ)
, V ′U =

1

2(
√

1 + ξ(λ))3
ξ′(λ),

−(1− γ(λ))γ′(λ) =
2λn2(1 + n)ξ0

[(1 + n)(nλ2 + ξ0)]2
> 0

and

ξ′(λ) = −2nξ2
0

ξ2
0 + λξ0(1 + 2n) + n(1 + n)λ3

(λ2n(n+ 1) + ξ0(λn+ 1))3
< 0,

hence γ′(λ) < 0 and V ′U < 0, V ′I < 0.

A.3. Proof of Lemma 2.3. Let V̄ (λ) ≡ λVI(λ) + (1− λ)VU (λ) and V̄ (p;λ) ≡ pVI(λ) +

(1− p)VU (λ), then

U ′(p;λ) = eαµc(p)[αµc′(p)V̄ (p, λ) + [VI(λ)− VU (λ)]]

U ′′(p;λ) = αµc′(p)eαµc(p)
[(
αµc′(p) +

c′′(p)

c′(p)

)
V̄ (p, λ) + 2[VI(λ)− VU (λ)]

]
.

Therefore, the necessary and sufficient condition for U ′′(p;λ) ≤ 0 is(
αµc′(p) +

c′′(p)

c′(p)

)
V̄ (p, λ) + 2[VI(λ)− VU (λ)] ≤ 0,
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or, put differently, (
αµc′(p) +

c′′(p)

c′(p)

)
VU [1− pγ]− 2VUγ ≤ 0.

Call K(p) = (αµc′(p) + c′′(p)/c′(p)), then such condition is equivalent to

K(p)[1− pγ]− 2γ ≥ 0 ⇐⇒ γ(λ) ≤ K(p)

2 +K(p)p
, (A.7)

where the latter inequality must hold true for any p. This proves (2.11). Now, if c(p) = p2,

the r.h.s. in (A.7) is decreasing in p. Therefore, under this assumption, (A.7) is equivalent

to

γ(λ) ≤ K(1)

2 +K(1)
=

2αµ+ 1

2αµ+ 3
.

A.4. Proof of Proposition 2.4. Note that if the concavity condition, U ′′(p;λ) ≤ 0, is

satisfied, the Nash equilibrium for the choice of probability p to observe the private signal

θ̃ must be symmetric, since traders are homogeneous, i.e., p∗ = λ for all traders, from

which we obtain

αµ = − 1

c′(λ)

VI(λ)− VU (λ)

V̄ (λ)
=

1

c′(λ)

γ(λ)

1− λγ(λ)
.

Substitute this expression into

γ(λ) ≤ 2αµ+ 1

2αµ+ 3
,

then it can be written as

γ(λ)2(3λ2 − 1) + γ(λ)(1− 3λ− λ2) + λ ≥ 0.

A tedious algebraic derivation shows that this is satisfied as soon as γ(λ) ≤ 1/2. Moreover,

since γ(λ) is a decreasing function, it is sufficient to have γ(0) ≤ 1/2. Finally, recall that

γ(0) can be written as a function on n. Specifically, we obtain

γ(0) = 1− 1√
1 + n

≤ 1

2
⇐⇒ n ≤ 3.

In other words, for c(p) = p2, n ≤ 3 guarantees γ(λ) ≤ 1/2, which is a sufficient condition

for U ′′(p;λ) ≤ 0 given any equilibrium λ ∈ [0, 1], hence p∗ = λ, and λ in equilibrium is

given by (2.13).

The proof on the existence and uniqueness of the Nash equilibrium p∗ with respect to

parameter µ is provided in Appendix B.
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A.5. Proof of Proposition 3.1. On the information-gain effect, it follows directly from

∂Φ(p∗,λ)
∂p∗ = γ(λ)

2(1−p∗γ(λ))2
and (3.2) that

1

−U
∂U
∂p∗

=
γ(λ)

1− λγ(λ)
− γ(λ)

2(1− p∗γ(λ))2
,

leading to the information-gain effect.

On the informed-trading effect, it follows from ∂Φ(p∗,λ)
∂λ = p∗γ′(λ)

2(1−p∗γ(λ))2
and (3.2) that, in

equilibrium,
1

−U
∂U
∂λ

= −
V ′U
VU

+
λγ′(λ)

1− λγ(λ)
− λγ′(λ)

2(1− λγ(λ))2
.

This, together with

γ′(λ) = − 1

1− γ(λ)

[
V ′I
VI
−
V ′U
VU

]
,

leads to the informed-trading effect with Γ(λ) = λ(1−2λγ)(1−γ)
2(1−λγ)2

.

A.6. Proof of Corollary 3.1. (i). Applying condition (3.3) to λ = 0, we have

V ′U (0)

VU (0)
<

1

2
γ(0). (A.8)

Note that

V ′U (0)

VU (0)
= − ξ′(0)

2(1 + ξ0)
, ξ′(0) = −2nξ0, γ(0) = 1− 1√

1 + n
.

This, together with (A.8), leads to (3.4).

(ii). Condition (3.4) can be written as

ξ0

1 + ξ0
<

1

2n

(
1− 1√

1 + n

)
:= ξ∗0(n).

It can be verified that ξ∗0(n) is a decreasing function of n. Note that limn→0 ξ
∗
0(n) = 1

4 ,

therefore ξ0 ≤ 1/3 becomes a necessary condition for W ′(0) ≥ 0.

Lemma A.1. Let X ∈ Rn be a normally distributed random vector with mean µ and

variance-covariance matrix Σ. Let b ∈ Rn be a given vector, and A ∈ Rn×n a symmetric

matrix. If I − 2ΣA is positive definite, then E
[
exp{b>X +X>AX}

]
is well defined, and

given by

E
[
exp{b>X +X>AX}

]
=|I − 2ΣA|−1/2 exp{b>µ+ µ>Σµ

+
1

2
(b+ 2Aµ)>(I − 2ΣA)−1Σ(b+ 2Aµ)}.
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A.7. Proof of Proposition 4.1. First, note that each trader’s expected utility condi-

tional on his information set is given by

V (λ; e) ≡ E
{
E
[
−e−αW̃ |F

]
|e
}

= E
[
− exp

{
−αeP − 1

2

χ2

v

}
|e
]
, K ∈ {I, U}, (A.9)

where χ ≡ E[R̃|F ] and v ≡ Var[R̃|F ], respectively. First, since (given the endowment

shock e) χ and P follow a bivariate normal distribution with mean vector and covariance

matrix given by

µ =

 µχ|e

µP |e

 and Σ =

 vχ|e σ(χ,P )|e

σ(χ,P )|e vP |e

 , (A.10)

where µχ|e ≡ E[χ|e], µP |e ≡ E[P |e], vχ|e ≡ Var[χ|e], vP |e ≡ Var[P |e] and σ(χ,P )|e ≡

Cov[χ, P |e]. Thus, using Lemma A.1 we can establish the following result,

V (λ; e) = − exp

−µ
2
χ|e + αe

[
2νµP |e + 2µχ|eσ(χ,P )|e + αe

(
σ2

(χ,P )|e − νvP |e
)]

2ν


√

1

1 + ξK
,

(A.11)

where ν = v + vχ|e. If the trader is informed, i.e., F = {θ, P, e}, since χ = θ − P and

v = vε, we obtain that

µχ|e = −βe,P e, µP |e = βe,P e, vχ|e = vθ + vP |e − 2σθ,P , σ(χ,P )|e = σθ,P − vP |e. (A.12)

Substituting (A.12) into (A.11) leads to the expected utility of an informed trader in (4.8)

with v = vε. On the other hand, if the trader is uninformed, i.e., F = {P, e}, since

χ = (1− κ)(−P )− κβe,P e and v = vD − κσθ,P , κ = σθ,P /vP |e, we obtain that

µχ|e = −βe,P e, µP |e = βe,P e, vχ|e = (1− κ)2vP |e, σ(χ,P )|e = −(1− κ)vP |e. (A.13)

Substituting (A.13) into (A.11) leads to the expected utility of an uninformed trader in

(4.8) with v = vD − κσθ,P .

A.8. Proof of Proposition 4.2. Substituting the optimal demands x∗U (P, e) and x∗I(θ, P, e)

in (4.5) and (4.6) into the market clearing condition (4.10) leads to the following,

(−P )

αv̄
+

λ

αvε
θ̃ =

[
1 + (1− λ)

κβe,P
αvU

]
z̃, (A.14)
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where 1
v̄ ≡

λ
vε

+ 1−λ
vU/(1−κ) . Thus, the equilibrium price can be written as

P =
λv̄

vε︸︷︷︸
bθ

θ̃ − αv̄
[
1 + (1− λ)

κβe,P
αvU

]
︸ ︷︷ ︸

bz

z̃. (A.15)

Therefore, we obtain

x ≡ bθ
bz

=
1

αvε

λ

1 + (1− λ)
κβe,P
αvU

,

which can be written as

x =
1

αvε

[
λ− (1− λ)

(
κβe,P

vε
vU

)
x

]
. (A.16)

Since vU = vD − κσθ,P , κ = σθ,P /vP |e and βe,P = σe,P /ve, also,

σe,P = −bzvz, σθ,P = bθvθ, vP |e = b2θvθ + b2zvz|e, vz|e = (v−1
z + v−1

u )−1, (A.17)

we can obtain that

−
(
κβe,P

vε
vU

)
x =

vzvεvθx
2

vuvzvD + vevεvθx2
=

1

ve/vz + x−2vu(v−1
θ + v−1

ε )
. (A.18)

Substituting (A.18) back into (A.16) leads to (4.13). Next, given x, we substitute (A.17)

into the expression for bθ and obtain that

bθ =
λv̄

vε
=

λbz
(
vuvzvD + vevεvθx

2
)

bzx2vzvεvθ − vevεvθx(1− λ) + bzvu(vεvθx2 + vzvDλ)
. (A.19)

Since bz = bθ/x, (A.19) can be simplified to bθ = vevεvθx
2+vuvzvDλ

vevεvθx2+vuvz(vε+vθλ)
, which leads to the

expression in (4.12).

A.9. Proof of Corollary 4.3. For λ = 0, since the equilibrium price P̃ = αvDz̃, we have

vP |e = α2v2
Dvz|e, σθ,P = 0, βe,P = −αvD

vz
ve
, ν = vD(1 + α2vDvz|e). (A.20)

Substituting (A.20) into (4.8) leads to

A =
α2(vε + vθ)

(
2vz/ve − (vz/ve)

2 + α2(vε + vθ)vz|e
)

1 + α2vz|e(vε + vθ)
,

1

1 + ξU
= 1 + α2(vε + vθ)vz|e

(A.21)

On the other hand, for λ = 1, since the equilibrium price P̃ = θ̃ − αvεz̃, we have

vP |e = vθ + α2v2
ε vz|e, σθ,P = vθ, βe,P = −αvε

vz
ve
, ν = vε(1 + α2vεvz|e). (A.22)
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Substituting (A.22) into (4.8) leads to

A =
α2vε

(
2vz/ve − (vz/ve)

2 + α2vεvz|e
)

1 + α2vz|evε
+ α2vθ,

1

1 + ξI
= 1 + α2vεvz|e (A.23)

with vz|e ≡ Var [z̃|ei] = (v−1
z + v−1

u )−1 and αµ = 1
2

γ(1)
1−γ(1) . Moreover, traders are al-

ways better off in the no-information equilibrium with λ = 0 than in the full-information

equilibrium with λ = 1, i.e.,

W(0; e)

W(1; e)
= exp

{
−1

2

γ(1)

1− γ(1)
− 1

2
α2

(
vu
ve
e

)2

vθ

}√
1 + α2vεvz|e

1 + α2(vε + vθ)vz|e
≤ 1. (A.24)

A.10. Proof of Proposition 4.4. Given trader i’s welfare in (4.8), the rate of change is

given by

W ′(λ; e)

−W(λ; e)
= −1

2
A′(λ)e2 +

1

2

[
ν ′(λ)

ν(λ)
− 1− λ

1− λγ(λ)

v′U (λ)

vU (λ)

]
+

γ(λ)

1− λγ(λ)
− λγ′(λ) + γ(λ)

2(1− λγ(λ))2
,

(A.25)

where ν(λ) = Var[R̃]. Moreover, since vu → ∞, the equilibrium price P simplifies to

(2.5), thus

A(λ) = α2vP (λ)/
ν(λ)

vU (λ)
> 0 and A′(0) =

2nξ0

(1 + ξ0)2
. (A.26)

The rest of the proof is the same as that for Corollary 3.1.

Appendix B. Existence and uniqueness of Nash equilibrium

This appendix examines the existence and uniqueness of the Nash equilibrium with

respect to parameter µ, which measures the sensitivity to the cost of information acqui-

sition. For convenience, we define ξ1 = α2vzvε. Note that ξ1 = ξI(1), representing the

squared Sharpe ratio of informed traders when λ = 1. Intuitively, in equilibrium, λ → 0

as µ → ∞; λ = 1 when µ is small enough; otherwise λ ∈ (0, 1). This is demonstrated as

follows.

Proposition B.1. Assume c(p) = p2 and condition (2.11) holds. Then

(i) λ = 0 as µ→∞;

(ii) λ = 1 when µ ≤ µ̄ := 1
2α

γ1
1−γ1 , where γ1 ≡ γ(1) = 1−

√
n+ξ1
n+ξ0

and ξ1 = α2vzvε;

(iii) there exists a unique λ ∈ (0, 1) when µ > µ̄.

Moreover, the equilibrium price P satisfies (2.5) with the coefficients bθ and bz evaluated

at the equilibrium λ.
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Proof: Note that γ(λ) ∈ (0, 1). With c(p) = p2, from the equilibrium condition 2αµλ =

γ(λ)/[1 − γ(λ)], it is easy to see that λ → 0 as µ → ∞. For λ = 1, we have µ = µ̄ =

1
2α

γ(1)
1−γ(1) . It remains to discuss the case µ > µ̄. To this aim, note that, in case of c(p) = p2,

the fixed point (2.13) is equivalent to

λ2 − 1

γ(λ)
λ+

1

2αµ
= 0. (B.1)

By defining

F1(λ) =
1

2γ(λ)
− 1

2γ(λ)

√
1− 2γ2(λ)

αµ
; F2(λ) =

1

2γ(λ)
+

1

2γ(λ)

√
1− 2γ2(λ)

αµ
,

(B.1) can be rewritten as [λ− F1(λ)][λ− F2(λ)] = 0. Assuming µ ≥ 2γ2(λ)/α (otherwise

the fixed point has no solution and λ = 1), F1 and F2 are well-defined. It is not difficult

to show that 0 < F1(λ) ≤ F2(λ). Therefore, since F1(0) > 0, one solution to (B.1) exists

if and only if F1(1) < 1. This condition is exactly µ > µ̄. Finally, concerning uniqueness,

note that dF1(λ)/dλ < 0. Indeed,

dF1(λ)

dλ
= − γ′(λ)

2γ2(λ)

(
1−

√
1− 2γ2(λ)

αµ

)
+

γ′(λ)

αµ
√

1− 2γ2(λ)
αµ

=
γ′(λ)

γ(λ)

F1(λ)√
1− 2γ2(λ)

αµ

< 0.

Negativity is due to the fact that γ′(λ) < 0, γ(λ) > 0, and F1(λ) > 0. By monotonicity,

λ = F1(λ) provides at most one solution. Therefore, if a second solution λ̃ to the fixed

point exists, it must solve λ̃ = F2(λ̃). By definition F2(λ) > 1
2γ(λ) ; therefore, as soon

as γ(λ) < 1/2, we have λ̃ = F2(λ̃) > 1, which is not feasible. This proves that the

solution to the fixed point is unique as soon as the sufficient condition for (strict) concavity,

γ(λ) < 1/2, is satisfied. �

Proposition B.1 provides a sufficient condition for the existence of a unique non-trivial

Nash equilibrium 0 < λ < 1. In general, the equilibrium fraction of informed traders is

expected to increase as traders become less sensitive to the cost function. Put differently,

we expect λ to be decreasing in µ. However, it turns out that such monotonicity is not

guaranteed in general.

Proposition B.2. The equilibrium λ = λ(µ) is decreasing in µ if and only if

G′(λ)

G(λ)
≤ c′′(λ)

c′(λ)
, G(λ) =

γ(λ)

1− λγ(λ)
; (B.2)
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or equivalently
γ2(λ) + γ′(λ)

1− λγ(λ)
≤ c′′(λ)

c′(λ)
. (B.3)

For c(p) = p2, condition (B.3) becomes

λ[γ2(λ) + γ(λ) + γ′(λ)] ≤ 1. (B.4)

In particular, at λ = 0, condition (B.4) is always satisfied; while at λ = 1, it becomes√
ξ1 + n

ξ0 + n

[
1 +

ξ1 + n

ξ0 + n

]
≤ 3

ξ1 + n

ξ0 + n
+

n2ξ1

[ξ0 + n]2
. (B.5)

Proof: In equilibrium, αµg(λ) = −VI(λ)−VU (λ)
V̄ (λ)

= γ(λ)
1−λγ(λ) = G(λ). For λ = λ(µ), taking

the derivative w.r.t. µ, we have αc′(λ) = −λ′(µ)[G′(λ)− c′′(λ)
c′(λ)G(λ)]. Therefore λ′(µ) ≤ 0

if and only if (B.2) holds. Applying c(p) = p2 to condition (B.2) leads to condition (B.3).

Clearly, (B.3) holds for λ = 0. For λ = 1, condition (B.3) becomes γ2
1 + γ1 + γ′1 ≤ 1.

Since γ(λ) = 1 − f(λ), this is equivalent to 1 + f2
1 ≤ 3f1 + f ′1. Using the fact that

f(λ) =
√

ξ1+nλ2

ξ0+nλ2
, we obtain condition (B.5). �

Proposition B.2 provides conditions for the equilibrium λ = λ(µ) to be decreasing in µ,

or, put differently, it provides a less restrictive condition for the uniqueness of the Nash

equilibrium λ. Note that, since λ < 1 and γ′(λ) < 0, condition (B.4) is always satisfied

under condition (2.11). This leads to Proposition B.3.

Proposition B.3. Consider the optimization problem (2.7) with c(p) = p2. Suppose that

µ > µ̄ := 1
2α

γ1
1−γ1 and γ(λ) < 1/2, where γ1 ≡ γ(1) = 1 −

√
n+ξ1
n+ξ0

. Then, there exists a

unique equilibrium (P, λ) such that (i) λ ∈ (0, 1) solves (2.13) and is decreasing in µ; and

(ii) P is given by (2.5).

The condition γ(λ) < 1/2 for the existence and uniqueness in Proposition B.3 indicates

that the relative utility gain of being informed should be small. Note that γ(λ) ≤ γ(0) =

1− 1/
√

1 + n due to γ′(λ) < 0.


